An SDN-inspired Model for Faster Network Experimentation

Eder L. Fernandes
Queen Mary, University of London
eleao@gmul.ac.uk

Ignacio Castro
Queen Mary, University of London
i.castro@qmul.ac.uk

ABSTRACT

Assessing the impact of changes in a production network (e.g., new
routing protocols or topologies) requires simulation or emulation
tools capable of providing results as close as possible to those from
a real-world experiment. Large traffic loads and complex control-
data plane interactions constitute significant challenges to these
tools. To meet these challenges we propose a model for the fast
and convenient evaluation of SDN as well as legacy networks. Our
approach emulates the network’s control plane and simulates the
data plane, to achieve high fidelity necessary for control plane
behavior, while being capable of handling large traffic loads. We
design and implement a proof of concept from the proposed model.
The initial results of the prototype, compared to a state-of-the-art
solution, shows it can increase the speed of network experiments
by nearly 95% in the largest tested network scenario.

CCS CONCEPTS

» Networks — Network simulations; Programmable networks;
Computing methodologies — Discrete-event simulation;

KEYWORDS

Discrete Event Simulation, Network Emulation, Software Defined
Networking

1 INTRODUCTION

Computer networks have become incredibly and unexpectedly large
infrastructures, frequently underpinning a wide range of critical
activities. While experimentation and innovation in these infras-
tructures is rather desirable, innovation (e.g., new routing protocols)
or even simple alterations (e.g., changes in the topology or its con-
figuration) result in often hard to predict behaviors. Experimenting
on a real production network is problematic, and the sheer size of
some of these networks can be overwhelming.

While physical testbeds are one obvious solution, they can be
too costly, complex, and may suffer from tighter space constraints

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS’18, May 2325, 2018, Rome, Italy

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5092-1/18/05... $15.00
https://doi.org/10.1145/3200921.3200942

Gianni Antichi
University of Cambridge
gianni.antichi@cl.cam.ac.uk

Steve Uhlig
Queen Mary, University of London
steve.uhlig@qmul.ac.uk

than the typically geographically distributed network under study.
This makes the use of testbeds limited to very small-scale scenarios.

Network simulators and emulators have been extensively adopted
as simpler and more accessible option for complex topologies. How-
ever, choosing the best approach between simulation or emulation
is far from easy. Indeed, they both come with their own benefits and
drawbacks. Simulators rely on mathematical and discrete-event
models of reality, to reproduce the behavior of the network. Typ-
ically, network simulators achieve high reproducibility thanks to
the underlying mathematical models, e.g., finite state machines. In
contrast, the intricacy of configuration is a challenge to obtain solid
results, given the large state-space they aim to reproduce.

On the other hand, emulators provide real network stacks and
thus can be used to test for real behaviors. Although they can
provide more realistic results than simulations, they are resource-
consuming (as much as the emulated network), effectively restrict-
ing the emulated network size, especially when run on a single
machine. While distributed versions of emulators increase scalabil-
ity, it increases the cost of the deployment and its complexity, by
for instance, requiring coordination among multiple machines.

Table 1 shows the main available options for simulating or em-
ulating both legacy and Software Defined Networks (SDN) [6].
Discrete Event Simulation (DES) tools such as NS2 [4] and NS3 [9]
are a good solution to foster reproducibility of network experiments.
Unfortunately, the complexity to create experiments and the time
required to run large scale simulations limits its potential. Fs-sdn [2]
improves simulation speed, but its scope is limited to SDN envi-
ronments. In contrast, emulators like Mininet [3] bring flexibility
in terms of network creation, as well as for the real applications
that can be used. Sadly, resource constraints make large scale ex-
periments practically infeasible. Mininet-VT [11] and Selena [8]
improve the emulation accuracy with virtual time scheduling ap-
proaches. Unfortunately, they slow down execution and require
changes the Operating System kernel. Finally, S3Fnet [5] proposes
an interesting mix of Parallel DES and emulation, to support larger
scale experiments. However it also requires kernel changes and its
speed suffers under high data plane loads.

This paper proposes a combination of DES and emulation but
with a completely different spirit to S3Fnet. While the latter em-
ulates the TCP/IP networking stack for any traffic, we opted for
a solution that emulates only the control plane of the network,
i.e., routing and SDN control protocols. Its rationale comes from
two main insights related to control plane traffic: (1) it is the only
one that can alter network behavior, hence to guarantee fidelity in
an experiment it is important be close to its real counterpart, (2)
there are way fewer control plane messages compared to dataplane

https://doi.org/10.1145/3200921.3200942

Table 1: Advantages and drawbacks of Network Emulators and DES

Tool Type Advantages Drawbacks
NS2/NS3 DES High reproducibility Slower as scale increases, complex configuration
Mininet Emulator Flexible, real network stacks Scale limited by machine resources
Mininet-VT/ Selena Virtual Time Emulator Increases emulation accuracy Changes to kernel/hypervisor, slower execution
fs-sdn DES Fast and lightweight SDN only, controller coupled to simulation
S3Fnet PDES/Emulator Large scale Changes to kernel, slows down under high load

traffic, so approximating/aggregating the dataplane is sufficient.
Our solution is inspired by the SDN approach of decoupling control
from data plane. In a nutshell, we propose a novel approach that em-
ulates the network control plane and simulates the data plane. Our
design speeds up simulation while keeping control plane fidelity.
Additionally, our approach can be used to perform experiments on
both legacy and SDN networks. We present a prototype and show
how it succeeds in achieving rather low execution times that barely
grow in a test with increasing network sizes.

2 A MODEL FOR CO-EXISTENCE OF
SIMULATION AND EMULATION

Inspired by the original goal of SDN, our approach decouples con-
trol and dataplane, by emulating the former and simulating the
latter. Such a separation introduces a key challenge: designing a
solution that allows the simulation and emulation layers to co-exist.
In our solution, both abstractions use different traffic granularities
and concept of time. Whereas the former uses coarse granularity
abstractions, e.g., flow models, and adopt a pure DES approach,
the latter works in a per-packet manner and relies on a Fixed Time
Increment (FTI) mechanic, to reproduce a continuous time environ-
ment. The platform thus runs DES when there is no interaction
with the emulated control plane, and the FTI mode when control
messages events are executed. The resulting model is scalable, as
the amount of control traffic, i.e., routing protocol packets, SDN
control messages, in networks is much lower than the data traffic.
The two modes operate as follows:

Pure DES. In traditional DES, the simulation clock advances
to the time of the most recent event. Algorithm 1 shows that the
events are executed in DES mode until an event from the control
plane happens. After such event, the simulator switches to the FTI
mode to execute in real-time. The event with the highest timestamp
possible in the system (e.g., in a 64 bits system the value is an
unsigned 64 bits integer) signals the end of the simulation.

Fixed Time Increment. When triggered, the clock advances
in equal time intervals, and all the events scheduled before the
current time are executed (Algorithm 2). A user-defined parameter
(controller idle interval) defines the interval required to switch
back to the DES approach, when the interaction between the sim-
ulated and emulated planes is considered done. It is important to
define an appropriate interval due to possible inconsistencies in
the simulation. If the controller idle timeout is lower than the time
required for the control plane to react to a control plane event,
the simulation will switch to DES and execute the next event that
might be ahead of a control plane reply. On the other hand, a too

Algorithm 1 Discrete Event Simulation mode

1: while not fixed_mode do

2 event < scheduler_retrieve(scheduler)
3 sim_clock < event.time

4 handle_event(event)

5 if event.type = CTRL_MSG then

6 fixed_mode «— true

7

8

9

Switch to FTI mode
else
if event.type = END then
10: Finish the Simulation
11: end if
12: end if

13: end while

large value will slow down the execution, as the duration of the
FTI mode will last longer than necessary.

Algorithm 2 Fixed Time Increment mode

1: while fixed_mode do

2 sim_clock < sim_clock + 100

3 event < scheduler_retrieve(scheduler)

4 while event.type # END and event.time < sim_clock do
5: handle_event(event)
6

7

8

9

if event.type = CTRL_MSG then
last_ctrl « event.time

end if
event < scheduler_retrieve(scheduler)
10: end while
11: if (sim_time — last_ctrl) > idle_interval then
12: fixed_mode « false
13: Switch to DES mode
14: end if

15: end while

2.1 Dataplane Traffic Model

To be able to experiment with large topologies, we use a flow-level
representation of network traffic, consisting of packets aggregated
by common headers, but potentially differing in size (similarly
to fs-sdn [2]). To account for traffic loss, we split flows’ arrival
and departure into two different events. Congestion occurs when
the aggregated size of concurrent flows and same (output-port)
destination arrive simultaneously to a node with insufficient output-
port capacity. Currently, the system cannot compute the packet

loss referred to a specific flow, so it randomly distributes the excess
of traffic that will be dropped among all the competing flows.

3 A DESIGN FOR PAST AND FUTURE
CONTROL PLANES

In this section we present the design of a simulator that uses the
proposed model. Figure 1 pictures the general architecture of the
solution. The top part represents the emulated network control
plane. It supports future proof approaches such as the those based
on a logically centralized SDN control or legacy protocols such
as the Border Gateway Protocol (BGP). The Connection Manager
(CM) sits in-between the control and data plane, and delegates
messages generated by events from the simulation to the emulation
and vice versa. To avoid possible loss of performance caused by
frequent changes from DES to FTI, some control plane traffic, like
the connection of an SDN controller with switches and common
keep alive messages are handled by the CM and never reach the
simulation side. The bottom part of the figure depicts the simulated
data plane. The Scheduler is responsible for adding and retrieving
events from the Event Queue in the correct order. At the Event
Handler, five events are processed: start of applications, arrival
and departure of flows, control messages from and to the control
plane. The last two trigger the mode change from DES to FTI. The
Topology block contains the simulated logic of network nodes such
as hosts, routers and SDN switches. Statistics from the simulation
are stored in a file or an independent database, so it can be accessed
by the control plane.

Emulated Control Plane

Applicati Applications
[Feoloators] - [Fee]
[OpenFlow Controller (OpenFlow Controller
RIB RIB
[Connection Manager]

Simulated Data Plane OpenFlow /

Routing message
e
|:| Insert/Retrieve
] exccute
] ’

Event Queue Event Handler

process flow

Figure 1: General Architecture of the Simulator

In the following, we show how our approach can work with both
SDN solutions or legacy control plane protocols.

SDN. This is the most natural candidate, as our model is inspired
in the control-data plane decoupling. In our design, the switches
are nodes implementing OpenFlow [7], the most widespread SDN
realization. Controllers are part of the control plane, thus can be
real and independent software instances. Consequently, when in-
teractions between SDN controllers and the network are needed,
the operation mode changes from DES to FTI. This change enables

the controller to interact with the simulator in near real-time. Fur-
thermore, new events from the controller are inserted in the event
queue, ahead of data plane events with the same timestamp. This
ensures the timely occurrence of control plane events preventing
data plane disruptions (e.g., traffic loss). We now illustrate this with
the example of a controller reacting to an event from the data plane:

o The simulator starts in the DES mode and executes an event
where a host sends a flow to a switch connected to it.

e The switch does not have an OpenFlow rule to handle the
flow. Following the default no-match action, a message must
be sent to the controller.

e When the message is executed, the system changes to FTI
operation. The controller handles the message and sends a
reply message which is added to the event queue.

o The reply from the controller is then executed, and the con-
troller does not interact with the platform until the con-
troller’s idle timeout. The system switches then back to DES.

BGP. Applying a legacy control plane to our architecture can
be done by enabling as many controllers as the data plane routers
in the topology. Indeed, the logical difference between a logically
centralized solution such as SDN and a distributed one, such as BGP,
is that the former presents a mapping of one or more controllers
for one to many switches, while in the latter case, each router has
its own embedded controller. In this scenario, the emulated part
runs lightweight BGP speakers (e.g., ExaBGP !) that allow real BGP
sessions in the control plane to generate the Routing Information
Base (RIB). From the RIB, the Forwarding Information Base (FIB) can
be derived and installed in the data plane.

In the BGP design, announcements are sent to the control plane
from the simulation side, triggering the FTT mode. The CM will
instruct the emulated BGP speaker to create a real announcement
to its destination. The receiving BGP peer will then store the reach-
ability information and build the local RIB. Finally, a FIB can be
derived and installed in the respective simulated router as an event
coming from the control plane. Upon BGP convergence, the system
is expected to resume to the pure DES mode.

4 PROOF OF CONCEPT AND EVALUATION

In this section we present and evaluate a prototype of our approach,
which is publicly available 2. The prototype is implemented in
C with Python bindings for the Application Programming Inter-
face (API), to enable simpler creation and configuration of network
scenarios. We abstract the connection of real controllers to the
simulated data plane using an OpenFlow driver [10] in the CM. The
CM runs in an independent thread with access to the Scheduler,
so the messages received from the controller can be added to the
Event Queue. Each operation mode (i.e., DES and FTI) has its own
thread that implements Algorithms 1 and 2, respectively. The thread
of the FTT runs periodically every 100 milliseconds, although the
time between two executions may vary slightly due to the system
scheduling. For this reason, time increases in FTI as the difference
between the system clock and the last execution of the thread.
We compared our solution with Mininet, as it is the de-facto tool
for SDN experimentation. Specifically, we assessed our solution in

!https://github.com/Exa-Networks/exabgp
2Repository: https://github.com/ederlf/paper-sigsim-pads-18

terms of speed and reproducibility®. Our experiment runs a traffic
pattern five times in a k-ary Fat-Tree: a common topology for data
centers. Each host sends 1Mbps of UDP traffic to a single destination
over a 60 seconds period. The expected aggregated bandwidth per
second, for the whole experiment, is equal to the number of hosts.
The topology is rather appropriate for large-scale networks: it is
composed of three layers of switches (edge, aggregation and core)
connecting hosts in a number of pods equal to a variable k. The
number of hosts increases exponentially with k, while the number
of switches nearly doubles. The network consists of SDN switches
controlled by one SDN controller that runs Equal-Cost Multipath
(ECMP) to load-balance traffic among the links. All the links have
enough bandwidth to avoid congestion, so the total aggregate traffic
can be observed. To demonstrate that our solution runs fine in
modest hardware, the experiments are performed in a computer
with two physical cores at 2.9 GHz of speed and 8GB of RAM.
Our solution clearly achieves its goal of low execution times.
Table 2 shows how our the execution times (in seconds) are almost
constant as the network grows. Moreover, it takes just about 5%
of the time it takes for Mininet to reproduce the largest scenario

(k = 8).

Table 2: Comparison of the total execution time for 5 trials
of experiments in a Fat Tree topology controlled by ECMP
implemented as an SDN application.

k/switches/hosts Our Approach Mininet

4/20/16 57s 416s
6/44/54 58s 562s
8/80/128 60s 1141s

For reproducibility, we compare the average aggregated band-
width in the 5 trials. The expected value for a test where k equals 6
and 8 is 54Mbps and 128Mbps, respectively. Figure 2 shows that our
implementation reproduces the expected amount of traffic in both
cases. On the other hand, Mininet struggles as the topology grows,
because it requires much more computing resources, showing less
traffic than expected in half of the experiment when k = 8.

Note that we also checked other tools from table 1. We experi-
mented with an OpenFlow module for NS3 [1] but did not execute
five trials per network size because a single run with with k = 8
took more than 50 minutes to finish. As for the other tools, the
configuration overhead to implement the tests made them too time-
consuming to obtain results in time for this paper. We hope to
perform a thorough comparison in our future work.

5 CONCLUSION

In this paper, we presented a platform for fast and accurate repro-
duction of network experiments. Our architecture, inspired by the
SDN approach of decoupling control and data planes, is based on
an emulation layer for the control plane traffic, and a simulation
layer for the dataplane traffic. We discussed how the proposed
solution can be used to perform experiments on both legacy and
SDN-enabled networks. We implemented a proof of concept and

3This aspect is even more important than speed. With this test we look into the ability
of a tool to reproduce results given same inputs.

Mininet (k=6) - -O - Qur approach Ek=6; - K-

R Mininet (k=8) - =% - Our approach (k=8) - 3 -
2 160 T T T T T
o)
s L i
2 140
£ nfelatalelate]ate]ats clatelatelals clalelate ol o latn]
g2 1201 XX XX KK ><-><QxELQ AR Xx
S ! XX
S 100 I, ‘ T
@ X X
@ 8n X b
© -
(o)) ' n
o 60 ’:§ggw—9QQQ@Q@-@Q&QQW@QQQQW&@
< 403 1
[} "
g 20p 1
g H: | | | | Il
P73 0

0 10 20 30 40 50 60

Time (seconds)

Figure 2: Comparison of the average aggregated bandwidth
after 5 test trials using our approach and Mininet. The ex-
pected average value, during the whole experiment, for k=6
is 54Mbps and for k=8 is 128Mbps.

assessed its potential by comparing speed and reproducibility capa-
bilities, against state-of-the-art solutions such as Mininet. We found
that our platform provides control plane fidelity, while delivering
results nearly 95% faster than the most commonly used solution.

ACKNOWLEDGMENTS

This research is supported by the UK’s Engineering and Physical
Sciences Research Council (EPSRC) under the EARL: sdn EnAbled
MeasuRement for alL project (Project Reference EP/P025374/1).

REFERENCES
¢!

Luciano Jerez Chaves, Islene Calciolari Garcia, and Edmundo Roberto Mauro
Madeira. 2016. OFSwitch13: Enhancing Ns-3 with OpenFlow 1.3 Support. In
Proceedings of the Workshop on Ns-3. ACM, New York, NY, USA.

[2] Mukta Gupta, Joel Sommers, and Paul Barford. 2013. Fast, Accurate Simulation
for SDN Prototyping. In Hot Topics in Software Defined Networking (HotSDN).
ACM.

[3] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick
McKeown. 2012. Reproducible Network Experiments Using Container-based
Emulation. In Conference on Emerging Networking Experiments and Technologies
(CONEXT). ACM.

[4] Teerawat Issariyakul and Ekram Hossain. 2010. Introduction to Network Simula-
tor NS2. Springer Publishing Company, Incorporated.

[5] Dong Jin and David M. Nicol. 2013. Parallel Simulation of Software Defined
Networks. In Principles of Advanced Discrete Simulation (PADS). ACM.

[6] D.Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig. 2015. Software-Defined Networking: A Comprehensive Survey. (2015).

[7] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
Enabling Innovation in Campus Networks. In Computer Communication Review,
Volume: 38, Number: 2. ACM.

[8] Dimosthenis Pediaditakis, Charalampos Rotsos, and Andrew William Moore. 2014.
Faithful Reproduction of Network Experiments. In Architectures for Networking
and Communications Systems (ANCS). ACM.

[9] George F. Riley and Thomas R Henderson. 2010. The ns-3 Network Simulator. In
Modeling and Tools for Network Simulation. Springer Berlin Heidelberg.

[10] Allan Vidal, Christian Esteve Rothenberg, and Fabio Luciano Verdi. 2014. The
libfluid OpenFlow Driver Implementation. In 32nd Brazilian Symposium on Com-
puter Networks (SBRC). SBC, 8.

Jiagi Yan and Dong Jin. 2015. VT-Mininet: Virtual-time-enabled Mininet for
Scalable and Accurate Software-Define Network Emulation. In Symposium on
Software Defined Networking Research (SOSR). ACM.

—_
jan

	Abstract
	1 Introduction
	2 A model for co-existence of simulation and emulation
	2.1 Dataplane Traffic Model

	3 A design for past and future control planes
	4 Proof of concept and Evaluation
	5 Conclusion
	References

